Analysis of band-gap formation in squashed armchair carbon nanotubes

نویسندگان

  • H. Mehrez
  • M. P. Anantram
  • T. Frauenheim
چکیده

The electronic properties of deformed armchair carbon nanotubes are modeled using constraint free density functional tight binding molecular dynamics simulations. Independent from CNT diameter, deforming path can be divided into three regimes. In the first regime, the nanotube deforms with negligible force. In the second one, there is significantly more resistance to deforming with the force being ,40–100 nN/per CNT unit cell. In the last regime, the CNT loses its hexagonal structure resulting in force drop-off followed by substantial force enhancement upon deforming. We compute the change in band gap as a function of deforming and our main results are: sid A band gap initially opens due to interaction between atoms at the top and bottom sides of CNT. The p-orbital approximation is successful in modeling the band-gap opening at this stage. siid In the second regime of deforming, large p-s interaction at the edges becomes important, which can lead to band-gap oscillation. siiid Contrary to a common perception, nanotubes with broken mirror symmetry can have zero band gap. sivd All armchair nanotubes become metallic in the third regime of deforming. Finally, we discuss both differences and similarities obtained from the tight binding and density functional approaches.

منابع مشابه

Metal-to-semiconductor transition in squashed armchair carbon nanotubes.

We investigate electronic transport properties of the squashed armchair carbon nanotubes, using tight-binding molecular dynamics and the Green's function method. We demonstrate a metal-to-semiconductor transition while squashing the nanotubes and a general mechanism for such a transition. It is the distinction of the two sublattices in the nanotube that opens an energy gap near the Fermi energy...

متن کامل

NBO analysis and theoretical thermodynamic study of (5,5) & (6,6) armchair carbon nanotubes via DFT method

In the present work, the structural and electronic properties, and conductivity of (5,5) and (6,6) Single Walled Carbon Nanotubes in the ground state have done by using the Hartree-Fock and density functional theory DFT-B3LYP/6-31G* level. Delocalization of charge density between the bonding or lone pair and antibonding orbitals calculated by NBO (natural bond orbital) analysis. These methods a...

متن کامل

NBO analysis and theoretical thermodynamic study of (5,5) & (6,6) armchair carbon nanotubes via DFT method

In the present work, the structural and electronic properties, and conductivity of (5,5) and (6,6) Single Walled Carbon Nanotubes in the ground state have done by using the Hartree-Fock and density functional theory DFT-B3LYP/6-31G* level. Delocalization of charge density between the bonding or lone pair and antibonding orbitals calculated by NBO (natural bond orbital) analysis. These methods a...

متن کامل

CO2 adsorption on the surface and open ended of Single wall carbon nanotubes (SWCNTs): A Comparative study

Adsorption of CO2 on the surface of Single-wall zigzag (5,0) and armchair (4,4) carbon nanotubes (SWCNTs) were studied through using density functional theory (DFT) calculations. Optimizations of geometric were performed at the B3PW91 level of 6-311++G** method standard basis set using GAUSSIAN 03 package of program [1]. Structural models were optimized and adsorption energies, band gap, charge...

متن کامل

CO2 adsorption on the surface and open ended of Single wall carbon nanotubes (SWCNTs): A Comparative study

Adsorption of CO2 on the surface of Single-wall zigzag (5,0) and armchair (4,4) carbon nanotubes (SWCNTs) were studied through using density functional theory (DFT) calculations. Optimizations of geometric were performed at the B3PW91 level of 6-311++G** method standard basis set using GAUSSIAN 03 package of program [1]. Structural models were optimized and adsorption energies, band gap, charge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005